IRONTRICARBONYL COMPLEXES OF DIARYL- HEPTAFULVENES AND SESQUIFULVALENES. THE REACTION OF TROPONEIRON TRICARBONYL WITH DIARYLKETENES.

Zeev Goldschmidt\* and Shlomo Antebi

Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel (Received in UK 26 January 1978; accepted for publication 17 February 1978)

Recently Lewis <u>et al</u>. have shown that heptafulvenes can be stabilized by irontricarbonyl complexation.<sup>1,2</sup> The synthesis of these fulvenes (<u>1</u>) was accomplished <u>via</u> a Grignard or sodium borohydride reduction of tropone (<u>2</u>) and acylcycloheptatriene (<u>3</u>) complexes followed by dehydration of the corresponding alcohols (<u>4</u> and <u>5</u> respectively) over silica gel.



We wish to report a novel one step synthesis of the hitherto unknown irontricarbonyl complexes of two diaryl-fulvenes, 8,8-diphenylheptafulvene  $(\underline{7})^3$  and dibenzosesquifulvalene (9),<sup>4</sup> by the reaction of tropone complex <u>2</u> with diphenylketene (<u>6</u>) and diphenyleneketene (8) respectively. Troponeiron tricarbonyl reacts slowly with excess of freshly prepared diphenylketene,<sup>5</sup> in benzene solution at room temperature, affording after chromatography (alumina, elution with hexane) an orange red crystalline product [mp. 138-140°, 20% yield from  $CH_2Cl_2 - EtOH$ ] which exhibited in the ir spectrum only iron-coordinated carbonyl absorptions at 2040 and 1940 cm<sup>-1</sup> with no other carbonyl signals at lower frequencies. The elemental analysis and mass spectrum suggested structure <u>7</u> as the product. This structure was further confirmed from the uv spectrum [ $\lambda_{max}$  ( $C_6H_{12}$ ) 232 nm ( $\epsilon$  18700), 263 (15900), 333 (12400), 394 (7400)] and the 100MHz pmr spectrum [ $\delta$  (CDCl<sub>3</sub>) 3.02 ( $H_4$ ,bt,J=8); 4.05 ( $H_1$ ,d,8); 5.34 ( $H_5$ ,bt,8); 5.6 ( $H_2$ , $H_3$ , $H_6$ ,m), 7.1(10H aromatic,m)]. This spectrum closely resembles that of the previously prepared heptafulvene complexes.<sup>1</sup>

Similarly, treating <u>2</u> with diphenyleneketene<sup>6</sup> in cyclohexane solution gave deepred crystals of dibenzosesquifulvalene complex <u>9</u> [mp. 165-166<sup>o</sup>, from CHCl<sub>3</sub> - hexane] whose structure was inferred from the analytical and spectroscopic data [ $\nu_{max}$  2045, 1970, 1988 cm<sup>-1</sup>;  $\lambda_{max}$  (C<sub>6</sub>H<sub>12</sub>) 253 nm ( $\varepsilon$  21400), 275 (15800), 285 (13200), 366 (7600), 454 (14200); pmr:  $\delta$  (CDCl<sub>3</sub>) 3.10 (H<sub>4</sub>,bt,8); 4.80 (H<sub>1</sub>,bd,8) 5.78 (H<sub>2</sub>,H<sub>3</sub>,m); 5.98 (H<sub>5</sub>,dd, 8,11); 6.47 (H<sub>6</sub>,d,11) 7.2, 7.7 (8H aromatic,m)].

A plausible mechanism for the formation of the complexed fulvenes  $(\underline{7} \text{ and } \underline{9})$ involves a [2+2] cycloaddition of ketene and tropone complex to form a spiro  $\beta$ -lactone intermediate  $\underline{14}$  which decomposes readily under the reaction conditions with loss of  $CO_2$ . The reaction of ketenes with carbonyl compounds to form  $\beta$ -lactons has been previously studied.<sup>7</sup> 3,4-Benzotropone ( $\underline{10}$ ) reacts with diphenylketene to give diphenyl-benzoheptafulvene ( $\underline{11}$ ).<sup>8</sup> However, tropone reacts analogously only with 8-oxoheptafulvene ( $\underline{12}$ )<sup>9</sup> to form heptafulvalene  $\underline{13}$  but prefers another course with diphenyl-<sup>8</sup> or dichloro-ketene.<sup>10</sup>

Consideration of this regiospecific and periselective cycloaddition by frontier orbital theory is based on the propensity of ketenes to undergo concerted  $\pi^2_s + \pi^2_a$  interaction between the ketene HOMO and ketenophile LUMO.<sup>11</sup> Here, the low-lying unoccupied molecular orbital of tropone complex, which is formed by interaction of an e-level of the Fe(CO)<sub>3</sub> fragment<sup>12</sup> with tropone  $\pi_4$  MO,<sup>13</sup> interacts in a favorable  $\pi^2_s + \pi^2_a$  manner <u>via</u> its carbonyl group with diphenylketene HOMO. This interaction is qualitatively illustrated by <u>15</u>.







12







## References and Footnotes

- 1. B.F.G. Johnson, J. Lewis, P. McArdle and G.L.P. Randall, J.C.S. Dalton, 2076 (1972).
- 2. For a general review on transition metal complexes of fulvenes see: R.C. Kerber and D.J. Ehntholt, Synthesis, 449 (1970).
- The uncomplexed compound has not been recorded in the literature. However, a phenyl derivative has been reported by J.A. Myers, R.C. Joines and W.M. Jones, J. Am. Chem. Soc., <u>92</u>, 4740 (1970).
- 4. Cf. H. Prinzbach, D.Siep, L. Knothe and W. Faisst, Liebigs Ann. Chem. 698, 54 (1966).
- 5. L.I. Smith and H.H. Hoehn, Org. Syn., Coll. Vol. 3, 356 (1955).
- 6. H. Staudinger, Ber., 39, 3062 (1906).
- H.E. Zaugg, Org. React., <u>8</u>, 305 (1954).
  D. Bormann and R. Wyler, <u>Chem. Ber</u>., <u>99</u>, 1245 (1966).
- 8. C. Jutz, I. Rommel, I. Lengyel and J. Feeney, Tetrahedron, 22, 1809 (1966).
- 9. Y. Kitahara, Pure Appl. Chem., 44, 833 (1975).
- 10. J. Ciabattoni and H.W. Anderson, Tetrahedron Letters, 3377 (1967).
- K.N. Houk, <u>Acc. Chem. Res.</u>, <u>8</u>, 361 (1975);
  K.N. Houk, R.W. Strozier and J.A. Hall, <u>Tetrahedron Letters</u>, 897 (1974);
  R.B. Woodward and R. Hoffmann, "<u>The Conservation of Orbital Symmetry</u>", Verlag Chemie, 1970.
- 12. M. Elian and R. Hoffmann, Inorg. Chem., 14, 1058 (1975).
- 13. L. Salem, J. Am. Chem. Soc., 90, 553 (1968).